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Abstract 

The problem of maximizing system utility by allocating a single finite resource to satisfy discrete 
Quality of Service (QoS) requirements of multiple applications along multiple QoS dimensions was 
studied in [6]. In this paper, we consider the more complex problem of apportioning multiple 
finite resources to satisfy the QoS needs of multiple applications along multiple QoS dimensions. 
In other words, each application, such as video-conferencing, needs multiple resources to satisfy 
its QoS requirements. We evaluate and compare three strategies to solve this provably NP-hard 
problem. We show that dynamic programming and mixed integer programming compute optimal 
solutions to this problem but exhibits very high running times. We then adapt the mixed integer 
programming problem to yield near-optimal results with smaller running times. Finally, we present 
an approximation algorithm based on a local search technique that is less than 5% away from the 
optimal solution but which is more than two orders of magnitude faster. Perhaps more significantly, 
the local search technique turns out to be very scalable and robust as the number of resources 
required by each application increases. 
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1    Introduction 

1.1 Motivation 

Consider a video-conferencing application. The audio streams in this application have multiple QoS 
considerations: the sampling rate of the audio data, the resolution (number of bits) of each audio 
sample and the end-to-end latency of the audio stream. Similarly, the video streams must deal 
with multiple QoS dimensions: the video frame rate, the size of the video window, the number 
of bits per pixel and so on. Given an operating point along each of these QoS dimensions, the 
application requires processing and network bandwidth resources at the application end-hosts and 
all intermediate links that the audio/video streams traverse. 

We envision an environment where many such time-critical, real-time and non-real-time 
applications each with multiple QoS dimensions co-exist in a system with a finite set of resources. 
During loaded periods, the system may not have sufficient resources to deliver the maximum quality 
possible to every application along each of its QoS dimensions. Hence, decisions must be made by 
the underlying resource manager to apportion available resources to these applications such that a 
global objective is maximized. J 

V 

1.2 Our Approach 

The QoS architecture [6] we consider consists of a QoS specification interface, a quality trade-off 
specification model, and a unified QoS-based admission control and resource allocation model. The 
QoS specification interface allows multiple QoS requirements to be specified, and is semantically rich 
both in terms of expressiveness and customizability. The QoS trade-off model allows applications 
and users to assign (utility) values to different levels of service that a system can provide. Finally, 
a QoS resource manager, taking QoS operating parameters of arriving applications as its inputs, 
makes resource allocations to these applications so as to maximize the global utility derived by these 
systems. A set of profiles that map QoS requirements to resource usage is used by the QoS resource 
manager during this allocation step. 

In [6], we presented a QoS (Quality of Service) management framework that enabled system 
and application developers to quantitatively measure QoS, and to analytically plan and allocate 
resources. In the model, end users' quality preferences are elicited when system resources are 
apportioned across multiple applications such that the net utility that accrues to the end-users is 
maximized. 

Using this QoS architecture as the foundation, we studied in [6] the problem of maximizing 
system utility by allocating a single finite resource to satisfy the QoS requirements of multiple 
applications along multiple QoS dimensions, We presented two near optimal algorithms to solve 
this problem. The first yielded a resource allocation which was within a known bounded distance 
from the optimal solution, and the second yielded an allocation whose distance from the optimal 
solution can be explicitly controlled by a QoS manager. 

In this paper, we consider the more complex problem of apportioning multiple finite resources 
to satisfy the QoS needs of multiple applications along multiple QoS dimensions. Each application 
in this context must satisfy requirements along multiple QoS dimensions and also requires the use 
of multiple resources. We provide a proof that an optimal solution to this problem is NP-hard. We 
then present and compare three solutions to this problem. These solutions comprise of a dynamic 
programming solution, a mixed integer programming solution and an approximation based on a 
local search technique. 



1.3 Related Work 

It must be noted that utility functions have been used by economists for several decades in attempts 
to model human behavior. Value-function scheduling was first applied by Jensen et al. [4] in the 
context of real-time systems. Liu et al. have used a similar notion in their use of "imprecise" 
computations [7]. They considered the problem of optimally allocating CPU cycles to applications 
which must satisfy minimum CPU requirements, but can produce better results with additional 
CPU cycles. The frequency of each application remains constant, while the computation time per 
instance of an application can be varied. The results were generally assumed to improve linearly 
with additional resources. Liu et al., as part of the Open Systems project at the University of 
Illinois at Urbana-Champaign, have also been studying an end-to-end QoS model that allows a 
stream spanning multiple nodes to have the same (or appropriately transformed) QoS parameters. 
Seto et al. [15] studied the problem of the optimal allocation of CPU cycles to feedback control 
applications, whose control quality improves in concave fashion with higher frequencies of operation. 
The computation time per instance of an application also remained constant in their model. In our 
model, the allocation decision is made with respect to the utilization available on a single resource, 
and not with respect to either the computation time or the period. Our model also deals with 
multiple resources and multiple QoS dimensions. 

Prior to [6], the work reported in [12, 13] primarily dealt with continuous QoS dimensions, 
and assumed that the utility gained by improvements along a QoS dimension were always repre- 
sentable by concave functions. In [6], both of these assumptions were relaxed by supporting discrete 
QoS operating points, and making no assumptions about the concavity of the utility functions. In 
this paper, we relax the assumption of allocating a single resource made in [6]. 

1.4 Organization of the Paper 

The rest of the paper is organized as follows. In Section 2, we describe the QoS model and formulate 
the QoS optimization problem being solved. In Section 3, we present an alternative formulation of the 
problem both to demonstrate its computational complexity and to serve as a basis for an algorithm 
to be presented in Section 4. In Section 4, we present three optimization algorithms for solving the 
multi-resource QoS problem. In Section 5, we present a detailed performance evaluation of the three 
algorithms. We show that our approximation solution based on a local search technique yields high 
quality results (better than 95% of the optimal result) at speeds that are orders of magnitude faster. 
Finally, we draw some conclusions and discuss future work in Section 6. 

2    System Modeling 

In this section, we provide a complete overview of the entities and metrics we use in this paper, 
including the Quality of Service and resource allocation model that we employ. 

2.1    Tasks and System Resources 

We consider a system with multiple resources that services n independent applications denoted 
by Ti,...,Tn. There are m distinct shared system resources which are allocated across the n 
applications, We let Ri denote the set of possible allocation choices for the ith shared resource. This 
set of possible allocations could be modeled either as a discrete set (e.g. the bandwidth required 
to support periodic transmission of fixed sized packets at one of several sampling frequencies) or 
as a continuous variable (e.g.   processor cycles required to ensure completion of a task's worst 



case computation requirements). Each of the shared resources has a maximum quantity or size 
denoted by rmax = (r™8*,..., r™ax). We also denote the set of possible resource allocation choices 
by R = Ri x < ■ ■ x Rm. 

2.2    Application QoS Requirements 

Each application has its own quality-of-service (QoS) requirements, and it contends with many other 
applications for system resources. We let Qn, Qi2, ..., Qidt be the quality-of-service dimensions 
associated with task Tj. Each Qij is a finite set of quality choices for the ith task's jth quality-of- 
service dimension, and we define the set of possible quality vectors by Qi = Qn x • • • x Qi^. 

Using the video-conferencing application as an example, the following is a sample list of 
quality dimensions (and their dimensional spaces) that might be associated with any particular 
application. The list is given to concretely illustrate quality dimensions that might be considered 
and is not intended to be exhaustive. 

• Cryptographic Security (encryption key-length) : O(off), 56, 64, 128 

• Data Delivery Reliability, which could be 

— maximum packet loss : as a percentage of all packets 

— expected packet loss : as a percentage of all packets 

— packet loss occurrence : as a per packet probability of loss 

• Video Related Quality 

— picture format1: SQCIF, QCIF, CIF, 4CIF, 16CIF 

— color depth(bits): 1, 3, 8, 16, 24, ... 
black/white, grey scale to high color 

— video timeliness — frame rate(fps): 1, 2, ..., 30 
low-frame-rate cartoon or animation to high motion picture video 

• Audio Related Quality 

— sampling rate(kHz): 8, 16, 24, 44, ... 
AM, FM, CD quality to higher fidelity audio 

— sample bit (bits): 8, 16, ... 

— audio timeliness — end-to-end delay(ms): ..., 100, 75, 50, 25, ... 
(Note that we list these in worst-to-best order, not numerically increasing.) 

2.3    Application and User Profiles 

We associate with each Ti an Application Profile and a User Profile. An Application Profile comes 
from an application designer, while a User Profile is a means for a user to provide user-specific quality 
requirements associated with a particular session. A user can either instantiate the attributes of the 
default application profile, by selecting one of many templates supplied with the application profile, 
or the user can supply her own utility values to quantify the quality derived from any particular 
choice of a QoS setting. 

An Application Profile has two components: a QoS Profile and a Resource Profile. A QoS 
Profile for task Ti consists of the following components for each of the quality dimensions: 

lrrhe choices listed here come from [3] [14]. Other standards, such as MPEG [9] [5] [14] can be used as well. 
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• Quality Space — Qi (e.g. possible picture formats, possible audio sampling rates, etc.) 

• Quality Index — for the jth component of Qi we define a bijective function, fy which maps 
the elements of Qij into integer valued labels, i.e. 

Jij '• Qij ~+ {I» 2,..., \Qij|| 

The labels must preserve the quality ordering, i.e., qx is "better than" q2, if and only if 
fijiVl) > fijiOi)- 

• Dimension-wise Quality Utility — mj : Qij —► M, a numerical assessment of the utility achieve 
by setting q^ € Qij for application T{ on quality dimension j. 

• Application Utility — a utility or quantitative QoS measure associated with application T+ 

Ui-.Qi-^TR 

The function Ui could, for example, be defined as a weighted sum of tty 

We require that Ui be non-decreasing in all di arguments and that it be non-negative. 

A Resource Profile for Tj defines a relation between R and Qi, r |=; q. This relation is 
a list of all resource allocation combinations that can be used to achieve each quality point q. It 
is important to recognize that there may be many choices of r which lead to the same value of 
q. For example, one might compress files to reduce network bandwidth requirements, while using 
more CPU processing cycles to perform the compression/decompression operations. Alternatively, 
one could avoid compression which would require more network bandwidth, but would reduce the 
processing cycles needed. It is important to note that the two approaches result in different system 
resource requirements but identical user quality. On the other hand, a given set of system resource 
allocations can be used differently by different applications and hence can result in different quality 
levels. For example, CPU processing capacity could be used to give medium levels of audio and 
video quality, or the same capacity could be used for high audio quality and low video quality. 
Consequently, we can only define a relation between Qi and R, not a function. 

2.4    Application QoS Constraints 

We allow each application to specify minimum QoS requirements for each of its relevant QoS di- 
mensions: 

„min   („rain  „min „min\ 

When the minimum requirements cannot be satisfied, the user of task Tj might choose not to run Tj 
at all. Alternatively, we could assume that the system is designed for a fixed set of users, and each 
user will be entitled to at least its minimum quality levels, even if that means that the quality levels 
of other users must be reduced to achieve this. In this paper, we assume that there are sufficient 
resources to ensure that the minimum QoS constraints can be satisfied for all applications. 



2.5    Application Utilities 

QoS is usually multi-dimensional, and its measure can be either objective or subjective (user or 
session dependent). A user might want to make some quality tradeoffs, especially when resources 
(such as processing power or network bandwidth) can change dynamically and an application's 
resource allocation might be reduced. For example, a user (or task T{) might generally have a 
desired quality level. However, she may be able to accept lower quality in certain dimensions if 
there are insufficient resources to obtain the desired quality levels. It is, therefore, to the user's 
advantage for a system to provide an interface that allows that user to make implicit or explicit 
quality tradeoffs. 

Quality Index. Certain quality dimensions, such as frame rate or end-to-end delay have 
easily defined utility functions while others, such as picture format, are often expressed in non- 
numeric, non-uniform, or non-increasing order and require a mapping from the quality space to 
a numeric quantitative space. We introduce the notion of Qualitylndex to map quality levels to 
indices. 

We now illustrate the concept and the use of the Quality Index in the context of our previous 
video-conferencing application. Consider task T{, which could be a video conferencing system. Tj's 
quality dimensions, quality space and Quality Index might be represented by the following: 

Picture format: Assume it uses the H263 [3] standard format 

Format:    SQCIF    QCIF    CIF    4CIF    16CIF 
Qualitylndex: 1 2 3 4 5 

The corresponding Quality Index is therefore Qn = {1,2,3,4,5}. 

Color depth: Assume that Tj has 1, 3, 8, 16, and 24 bit color depths available for the user to 
choose. 

Depth:    1    3    8    16    24 
Qualitylndex:    12    3     4      5 

Therefore Qi2 = {1,2,3,4,5}. 

Frame rate: Tj allows frame rates ranging from 1 fps to 30 fps in steps of 1 fps.  These will map 
directly onto Qi3 = {1,2,..., 30}. 

Rate (fps):    1    2    ...     30 
Qualitylndex:    1    2    ...     30 

Encryption key length: For Tj, encryption will be either on with 56-bit encryption or off. There- 
fore we have Q^ = {1,2}. 

Key length:    (none)    56-bit 
Quality Index: 1 2 

Audio sampling rate: Assume Tj provides audio sampling rates from AM-quality (8 kHz) to CD- 
quality (44 kHz), 

Sampling rate (kHz):    8    16    24    44 
Qualitylndex:    12      3      4 

Thus we have Qi5 = {1,2,3,4}. 

Audio bit count: Assume that T{ provides only two sampling sizes, 8 bits and 16 bits. 



Bit count:    8    16 
Quality Index:     1     2 

Therefore Qi6 = {1,2}. 

End-to-end delay: Assume that end-to-end delays ranging from 125 ms to 25 ms in steps of 25 ms. 
Since high numbers for end-to-end delay are worse than low numbers, QH — {1,2,..., 5} maps 
high number to low indices. 

Delay (ms):    125    100    ...     25 
Quality Index:      1        2   ' ...      5 

Dimension-wise and Application Utilities. Quality points in the multi-dimensional 
case generally do not have a complete ordering. The individual dimensions, however, do. Recall 
that the application utility m for Tj is denned in terms of the value that accrues when T% achieves a 
certain quality, i.e. Ui : Qi —> H. As discussed above, when many quality dimensions are involved, it 
is often very difficult for a user to express his/her quality preferences, We therefore provide the user 
with the capability to specify dimension-wise quality utilities. As a result, the application utility 
can then be defined as a weighted sum of dimension-wise utility. 

Given the Quality Index, a dimension-wise utility can be defined and the application utility 
can be defined from it. 

System Utilities. For the overall system, with multiple applications each of which possibly 
requires multiple resources, we define a system utility function 

u : Qx x • ■   x Qn -+ K, 

which could be defined in a variety of ways such as: 

• A (weighted) sum of Application Utilities 

n 

u(qi, ...,qn) = ^2 wiui(<li) 
i=l 

for differential services, where Uj is non-decreasing, and 0 < Wi < 1 could be the relative 
importance or priority2 of Tj, or 

• u — u*, where 

for "fair" sharing, y 

U*(qi,...,qn) -  min mfai) 
*=1. ..n 

Problem Formulation. For a given set of tasks Ti,---,Tn, our problem is to assign 
qualities (#) and allocate resources (ri) to tasks or applications, such that the system utility u is 
maximized. Therefore we have the following optimization problem: 

maximize   u(qi,..., qn) 

subject to   qi > qf** or qi = 0 ,   i = 1,..., n,     (QoS Constraints) 

(1) 
2jr*i ^ '"jp8* > 3 — I» • •. > m,   (Resource Constraints) 

ri^iqi , i = 1, ...,n. 

Note that the algorithms or schemes presented in this paper are for the weighted sum where the weights are set 
to 1 for simplification to present the algorithms. 



In the next section, we will formulate the combinatorial problem in a different manner, so 
as to precisely show the complexity of the QoS optimization problems. We will also also present an 
algorithm from that perspective in Section 4.2. 

3    Optimization Problem Complexity 

In the previous section, we defined a general QoS optimization problem involving multiple resources 
(MR) and multiple QoS dimensions (MD). The general problem is, therefore, denoted by MRMD. It is 
useful to identify three special cases of this problem in which either the number of resources is 
restricted to a single resource (SR) or there is a single QoS dimension (SD) or both. Algorithms 
for SRSD, SRMD and MRSD problems have been discussed in [12, 13]. In Section 2, we discussed QoS 
dimensions and indicated that those could be either continuous (e.g. processor cycles to ensure a 
task's worst case computation time) or discrete (e.g. different video formats). In this paper, we 
focus on the optimization problem only for the case of discrete QoS settings. In this formulation, 
we can give an explicit enumeration of all possible QoS operating points for each task. Using this 
discrete formulation, the MRMD optimization problem defined in the previous section can be restated 
as follows. 

Let Kji)..., Ki\Qi\ be an enumeration of the quality space, Qi, for task Tj>JLet pyi,..., pijNtj 

be an enumeration of the resource usage choices (tradeoffs among different resources) associated 
with Kij for Tj, where Nij is the number of such resource usage choices. In particular, we require 
Pijk \=i Kij, that is the resource vector pyfc must provide QoS levels «y to application Tj. 

Let Xijk = 1 if task Tj is assigned quality point K^ and resource consumption p^k, and 
Xijk = 0 otherwise. Hence, if task Tj is accepted for processing by the system, then exactly one of 
the indicator variables x^k equals 1, while the others are 0. If Tj is not accepted, then all are 0. 
Using this notation, the optimization problem can be stated as: 

n   \Qi\ Nij 

maximize   ^^J^aJyfcUiC««) 
i=ij=ik=i 

n   \Qi\ Ntj 

subject to   ]T]T^2XijkPijki < rf3*,   £ = l,...,m, 
i=i i=i fc=i (2) 

\Qi\Nif 

23S *W< 1 , » = l,..,,n, 
j=i k=i 

Xijk € {0,1}, i = 1,..., n, j = 1,..., \Qi\, k = l,...,Nij. 

Note, that piju is just the Äh coordinate of the vector p^k. Note that the possible QoS levels 
for application Ti (/%), their utility (m(Kij)), resource requirements using pijk (pijke, I < £ <m) 
and total resource availability (rf**) are given constants. The variables to be selected to optimize 
total system utility are the x^k- Consequently, all the instances of our problem (SRSD, SRMD, MRSD, 
MRMD) can be viewed as special cases of the general (mixed) Integer Programming or Nonlinear 
Programming problems. 

We now consider the complexity of the SRSD, SRMD, MRSD, MRMD problems. 

Proposition 1 SRSD? SRMD, MRSD, and MRMD are all NP^hard problems. 

Proof Since SRSD is a special case of the other SRMD, MRSD and MRMD, it is sufficient to show that 
SRSD is NP-hard. 



For SRSD, we have m = Ntj = 1 and thus k = £ = 1. Consequently, Problem (2) becomes 

n   \Qi\ 

maximize   ^^^iji«i(«y) 
i=\ j=i 

n   \Qi\ 

subject to   ^^Xijipiju <rfax, 
i=i j=i (3) 

IQil 
22xiji < 1) i = l,...,n, 

Xiji£{0,l}, i = l,...,n, j = l,...,\Qi\. 

The 0-1 Knapsack Problem is known to be NP-hard [8]. It can be described as follows. Given a set 
of n items and a knapsack of capacity c, with pi and Wi the profit and weight of item i respectively, 
select a subset of the items so as to 

n 

maximize   y^pjXj 
i=l 

subject to   Y^ WiXi < c ^ ' 

XiE {0,1},     i = l,...,n, 

We can therefore reduce the 0-1 Knapsack Problem to SRSD by setting 

Qi = {1} 
ui(9i) = Pi 
„max = c 

Pilll = Wi 

which gives the 0-1 Knapsack Problem's Xi represented by xm in the SRSD problem. D 

The observation that the SRSD (hence MRMD) problem is NP-Hard indicates that systems with 
a large number of tasks cannot be optimized in real-time, Nevertheless, this does not preclude the 
possibility that special versions of the problem can be optimally solved, or that fast algorithms that 
give near optimal solutions cannot be found. In the next section, we report on algorithms that offer 
near^optimal solutions for MRMD problems of substantial size. 

j 

4    MRMD Algorithms 

In this section, we develop several algorithms which will be used to find near-optimal solutions to the 
MRMD QoS optimization problem. In view of the multi-dimensional and potentially subjective nature 
of QoS, there may be no complete ordering among quality-of-service points, even for individual 
tasks. Moreover, as discussed earlier, in some instances, different combinations of resources can be 
used to obtain one multi-dimensional quality point. Consequently, there may be no function that 
can be defined to map the resources allocated to an application to its achieved utility. To deal with 
this problem, a structural composition is required for the algorithms that calls for a mapping from 



resource to utility. Specifically, an R-U (Resource to Utility) function/graph will be constructed for 
each task through the QoS Profile and Resource Profile defined in Section 2. 

Recall that given a particular resource allocation to a task, one could use those resources to 
improve QoS in some dimensions and reduce it in others, and these different allocations would lead 
to different utility values. Still, the most valued QoS point for each resource value can be chosen. 
We then define a function gi : R —> ]R, such that 

gi(r) = max{ Ui(q) | V \=i q } (5) 

and define hi : P —> V(Qj) to retain the quality points associated with the utility value gi(r): 

hi(r) = {q€Qi\ Ui(q) = gi(r) Ar\=iQ}. (6) 

An R-U graph can then be generated for each task, each of which would be a multi-dimensional 
step function. 

4.1    Finding the Optimal Solution for MRMD 

The solution method and algorithm described in this section can be viewed as an extension of the 
dynamic programming algorithm described in [6], The scenario we use to illustrate the algorithm is 
a two-resource (m = 2) case, but the scheme and results described below extend readily to higher 
dimensions. 

The challenge here is to extend the tabular or regular dynamic programming scheme to the 
case of multiple resources. As in the single resource case, each allocation is in units of size rfiax/Pi 
and r2

nax/P2- These represent the smallest possible allocation of each resource type, and Pj, i = 1,2 
determine the total number of these resource bundles. When Pi = P2 = 100, for instance, this 
would mean that allocation is given as an integer percentage of the total resource available. 

For the two-resource case, the structure of an optimal solution to the problem can be char- 
acterized as follows: 

Denote by v(i,pi,p2),th.e maximum utility achievable when only the first i tasks are consid- 
ered with rf^pi/Pi units of resource Pi and rfaxp2/P2 units of resource R2 available for allocation. 
Define the value of an optimal solution recursively in terms of the optimal solutions to subproblems 
as 

v(i,Pi,P2)=     max    {gi(p'i,p2)+ v(i-l,pi-p'1,p2-p'2)} (7) 
Pi€{0 P1} 
p£e{o,...,P2} 

In analogy with the single resource case, v(n, Pi, P2) will be the maximum utility achievable 
given n tasks and rmax of resources. The set of interesting p[ and p2 values are the discontinuity 
points of gi. 

We shall use the following notation in our algorithm. Let 

*-(fc)--te)> 
list the discontinuity points of gi, the utility function associated with Tj in increasing it-order. Let 
r{i>PuP2) contain the corresponding resource allocations that yield v(i,pi,p2). Let qos(i,pi,p2) be 
the list of QoS allocations choices for tasks T\ through Tj that result in v(i,p\,p2). 

Using the above notation and based on Equation (7), an exact algorithm can be constructed 
for the MRMD problem with discrete resource bundle allocations. As an illustrative example, the 
following formalizes this algorithm for m = 2 and general n assuming that resources have been 
divided into Pi, % = 1,2 bundles: 

9 



mrmd(n,P1,P2,Ci,...,Cn) 

1. for pi = 0 to Pi do // Initialization 
2. for p2 = 0 to P2 do 
3. v(0,p1,p2):=0 

4. r(0,pi,p2):=0 
5. Qos(0,pi,p2) :=nil 

6. for i = 1 to n do // Dynamic programming 
7. for pi = 0 to Pi do 
8. for p2 = 0 to P2 do 
9. u* := 0 

10. r* := 0 
11. j* := 0 
12. for j = lto \d\ do 
13. if (ry ^ (pi,P2)) then 
14. continue 
15. else 
16. u := Uii + v(i -l,pi- ryj,p2 - rij2) 
17. if (u > u*) then 
18. u*:=u 
19. r* := m 
20. '        j*:=j 
21. v(i,pi,p2) :=u* 
22. r(i,pi,p2) :=r* 
23. qos(i,pi,p2) := gos(i - lfPl - ryi,p2 - ^2) concat [/ij(r„*)] 

24. (pi,p2) := Tmax  \ // Unwind and retrieve allocation results 
25. for i = n downto 1 do 
26. resource(i) :=r(i,pi,p2) 
27. utility(i) := v(i,pi,p2) 
28. (Pi)P2) := (Pi,P2) — resource(i) 
29. return v(n, Pi, P2), qos(n, Pi,P2), resource(l), .., ,resource(n), utility(1), ,.. ,utility(n) 

Upon the return of the mrmd algorithm, qos(n, P\,P2) will contain the QoS values assigned 
to 7i through Tn, utility(i) contains the corresponding utility accrued for Tj, and resource(i) gives 
the resource allocation for Tj. Notice that the resource part in each element of the Q list above is 
a vector, and therefore they do not necessarily increase in the resource component. 

Let L = maxf=1 \d\. The computational complexity of the algorithm is then given by 
0(nLPiP2), or 0(nP^P^), which is pseudo-polynomial as in the SRMD case. 

The above algorithm extends in straightforward fashion to multiple resources with com- 
putational complexity 0(nP? ■ • -P£), where m is the number of different resources available for 
allocation. Due to its pseudo-polynomial complexity, we expect that it will have limited use for 
large-sized on-line systems. However, it can be used for off-line and solution quality measurement 
of other heuristic and approximation schemes. 

10 



4.2 Integer Programming 

Using the problem formulation given in Equation 2 of Section 3, Integer Programming algorithms 
can also be applied. For efficiency reasons, we use the CPLEX [2] MIP callable library which employs 
a branch-and-bound algorithm. In the branch-and-bound method, a series of LP subproblems is 
solved. A tree of subproblems is built, where each subproblem is a node of the tree. The root node 
is the LP relaxation of the original IP problem. 

To improve the performance of the integer programming with branch-and-bound approach, 
one can use task priorities and gradients of the dimension-wise quality utility functions as heuristics 
for developing an integer solution at the root node and for selecting the branching node, the variable 
and direction. By setting the optimality tolerance (such as the gap between the best result and utility 
of the best node remaining) or setting limits on time, nodes, memory, etc., one can also obtain fast 
approximately optimal results. 

One drawback of the branch-and-bound technique for solving integer programming problems 
is that the solution process can continue long after the optimal solution has been found, while the 
tree is exhaustively searched in an effort to guarantee that the current feasible integer solution is 
indeed optimal. As we know, the branch-and-bound tree may be as large as 2n nodes, where n 
equals the number of binary variables. A problem containing only 30 variables could produce a tree 
having over one billion nodes. 

We shall provide a performance evaluation of this scheme in the next section. Still, its 
applicability for practical but large MRMD problems is yet to be determined. 

4.3 Approximation Algorithm for MRMD 

In this section, we shall define an algorithm that yields near-optimal results but can execute at 
potentially much higher speeds than the optimal algorithms using dynamic programming or mixed 
integer programming. We shall use an algorithm that uses a localsearch technique. Recall that n 
denotes the number of tasks and m denotes the number of resources. Let 

.... i 

Q = 

represent the discrete set of utility-resource pairs for task Tj. Note that in contrast with the SRMD 
algorithms presented in [6] where each r^, 1 < j < ki was a scalar, the resource components, ry, in 
Ci are vectors. 

To handle the multi-dimensional resource case, it is useful to define a penalty vector to 
"price" each resource combination. Specifically, let p = {pi,-- •,pm)i where pi £ [l,oo) be the 
penalty factor, and rp = (r\ • p\, > • •, rm • pm) be the penalized resource vector. It is useful to define 
a scalar metric for each penalized resource vector. This metric is denoted r*. A variety of metrics 
could be used. For example, r* can be defined as: 

Once we have defined r* 

r* = H^ll - yfi Pi)a + -" + (r»Ja 

, we augment Ci by adding this component to obtain 

/ ( Uil ) 
/ uihi \ \ 

Cic = (     rn )• • ■ j 1    riki 
)■ AUJ \ Viki  / 
/ 

We now define the algorithm amrmdl. In this algorithm, rQ denotes the current remaining resource 
capacity after some of the available resources have been allocated.   sJist[i].t, sJist[i].r, sJist[i].u 
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contain task ids, their associated r-values and «-values of the corresponding tasks, and r[i] gives the 
resources currently allocated to Tj. 

amrmdl(n, Ci,...,Cn,e) 

1. u* :=0 
2. p := initial-penalty (Ci, ..., C„, rmax) 
3. repeat := true 
4. while repeat do 
5. repeat i— false 
6. for i = 1 to n do 
7. Cic := compound-resource (C{,p) 
8. for i = 1 to n do 
9. C'ic := convex_hull^rontier(Cjc) 

10. r[i] := 0 // vector assignment 
11. u[i] := 0 
12. stop\i] := 0 
13. SJ^=merge(C{c,...,C74c) 
14 rc ._ rmax 

15. for j = 1 to |*Jisij do 
16. z := sJist[j].t 
17. if (siop[z]) then 
18. break 
19. ß := sJist\j].r - f[i]       // vector subtraction 
20. if (ß < rc) then 
21. rc:=rc-ß 
22. r[i] := sJist[j'].r 
23. u[i] := sJist[j].u // update allocation of 7} 
24. else 
25. siopfi] := 1 
26. u := 0 
27. for i = 1 to n do 
28. u:=u + u*[i] 
29. if ((« - «*) > e) then 
30. repeat := true 
31. u* := u 
32. for i = 1 to n do 
33. u*[i] := u[i] 
34. r*[t]:=r[t] 
35. p := adjust-penalty (p, Ci,..., Cn, r

e, rmax) 
36. for i = 1 to n do 
37. g[»] := ^(r*[t]) // see Equation (6) 

return u*, q[l],..., q[n], r*[l],..., r*[i\ 38 

Note that the procedure convexJiull-frontier works on the compound resource portion of each 
element in Cic. By setting e to different values, along with the heuristic result from procedure 
initial-penalty and adjust_penalty, we can control the solution refinement steps. The asymp- 
totic computational complexity of amrmdl with zero refinement; can be obtained as follows. 
Let L = maxf=1 \d\.   The procedure initial-penalty takes 0(nL) operations.   After the pro- 
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cedure convex-hulLfrontier3 (which requires 0(nL log L) operations) a convex hull frontier with 
non-increasing slope segments is obtained for each task. The segments are merged at Step 13 using 
a divide-and-conquer approach with log2 n levels, with each level requiring nL comparisons. Merg- 
ing thus requires 0(nL\ogn) operations. Steps 15 through 25 require 0(\sJist\) = 0(nL). The 
adjust_penalty procedure requires 0(nL), and Steps 27 through 35, 36 through 38 require 0(nL). 
The total running time of the algorithm is, therefore, 0(nL log L) + 0(nL logn) + 0(nL) + 0(nL) = 
0(nL\ognL). 

In the next section, we apply the algorithms amrmdl and MRMD to a range of test problems 
to evaluate their effectiveness. 

5    Performance Evaluation 

In this section, we present a detailed performance evaluation of the dynamic programming, integer 
programming and amrmdl algorithms discussed in the previous section. 

5.1 The Nature of the Experiments 

The experiments we conducted were as follows. For each task set, we generated given number of 
task profiles, each with the following properties: 

• The number of QoS options was given. 

• The resource usage for the QoS options were generated randomly, but consistently, i.e., more 
resouce would not lead to lower quality. 

• The utility associated with each QoS options was likewise generated randomly, but consistently. 

The three MRMD algorithms were then run on this task set for a given number of available units on 
each resource. The running times and total utility obtained for each algorithm were noted. This 
was repeated for several task sets and we computed the average performance across these repeat 
experiments. Finally, for larger sized problems, the running times for dynamic programming and 
integer programming proved to be impractical (hours or days in some cases) and we evaluated only 
the near-optimal algorithm amrmdl. 

It must be added here that the optimal results obtained by the integer programming scheme 
and the dynamic programming algorithm matched. This provides us with a good degree of cross- 
validation of correctness with respect to our implementations of our schemes. 

5.2 Performance of the Dynamic Programming Scheme 

We first present the results of the evaluation of the dynamic programming scheme. As mentioned 
earlier, dynamic programming yields the optimal resource allocation to the various tasks but its run 
times can be rather large. 

Figure 1 plots the CPU time consumed by mrmd (the dynamic programming algorithm) when 
there are two resources and rmax = (180,100). In other words, the number of units of resource 1 
is 180, and the number of units of resource 2 is 100, By assumption, each resource can only be 
allocated in integer units4. The number of tasks to which these two resources must be allocated is 

3Overmars & Leeuwen's [10] algorithm, the quickhull [11] or Graham-Scan [1]. 
Higher the total number of units, finer is the granularity of the resource allocation. 
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Figure 1: The Run times of Algorithm mrmd with rE (180,100) 

plotted along the rc-axis. The CPU time consumed by the dynamic programming scheme is plotted 
along the y-axis and is in terms of seconds. Three lines are plotted corresponding to different QoS 
options available to each task. For example, the top-most line corresponds to a QoS maximum of 
(4,3,4) (i.e. there are three QoS dimensions, each having 4, 3 and 4 discrete options respectively). 
As can be seen, the consumed time increases linearly with the number of tasks, and the slope 
increases as the number of QoS options to be considered increases. These results are consistent with 
the pseudo-polynomial complexity of the dynamic programming scheme discussed in Section 4.1. 

It must be noted that, in absolute terms, mrmd consumes several tens of seconds for a problem 
of modest size in terms of the number of tasks. As a result, its applicability to make online decision- 
making in real-time systems is highly questionable. 

5.3    Performance of the Integer Programming Scheme 
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Figure 2: Running Times for Computing the Optimal Solution using Mixed Integer Programming 
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Figure 3: Running Times for Computing Solutions using Mixed Integer Programming and a Specified 
Maximum Deviation from the Optimal Solution 

The CPU times consumed by the mixed integer programming package CPLEX on three-dimension, 
two-resource problems are shown in Figure 2. An option called SOS (Special Ordered Set) files was 
used to group sets of related variables and set weights on members of the sets. The graph plots 
the running times to find an optimal solution for each of the five problems of different sizes. The 
results are shown as a scatter-plot rather than as an average of running times due to their high 
degree of variability. For example, among the five problems with 15 tasks having a QoS maximum 
of (4,3,4), the running times were 0.59, 0.69, 2.43, 2.79 and 34.91 seconds. This indicates that 
subtle differences in the specific utility and resource values of set-points can drastically increase the 
size of the search space. 

Optimality Thresholds. In order to reduce the running times while still maintaining high- 
quality results, an optimality threshold can be specified. The optimality threshold indicates that 
the solution will be within a fixed bound of the optimal solution. The running times for the same 
problem set with an optimality threshold of 5% is shown in Figure 3. By applying this threshold, the 
worst-case running time was reduced to 31.85 sees versus 107.69s for finding the optimal solution 
while at the same time maintaining results which are very close to the optimal solution. The actual 
quality of the results measured as a fraction of the optimal result is shown in Figure 4. All of the 
solutions in our problem set were more than 96.95% of the optimal solution, 

Running Time Thresholds. If a strict upper bound on the solution time is required, a 
time-out can also be set. When the time limit for a problem has expired, the currently available best 
solution is returned. The solution quality for a 3-second timeout is shown in Figure 5. Even with a 3 
second timeout, all of the sample problems completed with solutions that are at least 93.43% of the 
optimal. This demonstrates that reasonable sized problems can be solved using integer programming 
techniques when a timeout is used. 

5.4    Performance Evaluation of amrmdl 

We now evaluate the performance of the amrmdl algorithm. Figures 6 and 7 correspond to the same 
set of tasks used to plot Figure 1 (i.e. rmax = (180,100), n = {5,10,15,20,25}). 

Figure 6 plots the ratio of the solution quality obtained by amrmdl to the optimal solution 
obtained by the mrmd dynamic programming algorithm. Two conclusions are of immediate interest. 
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Figure 4: Solution Quality using Mixed Integer Programming and a Specified Maximum Deviation 
from the Optimal Solution 

The first is from Figure 6 and shows that amrmdl obtains more than 96% of the maximum quality 
obtained by the dynamic programming algorithm. The second conclusion is from Figure 7 which 
shows that the solutions can be obtained in the order of tens of milliseconds (instead of tens of 
seconds for mrmd). Hence, in brief, amrmdl obtains better than 96% of the quality obtained by mrmd 
but does so three orders of magnitude faster. 

We then used amrmdl to solve much larger problems (where mrmd and mixed integer program- 
ming would take too long to be practical). Figure 8 plots the scalability of amrmdl with respect to 
the number of tasks and the size of each task's quality space. We used rmax = (10000,10000,10000), 
n = 8,16,32,64,128,256,512,1024, and the number of QoS dimensions ranged from 1 through 6. 
The run times plotted along the y-axis are in log2 scale. As can be seen, acceptable running times 
are obtained for up to 100 tasks. The running times scale with both the number of tasks and the 
number of QoS dimensions. 

Finally, Figure 9 plots the scalability of amrmdl with respect to the number of tasks and 
number of resources. We now use qmax of each task to be (3,3,3), n = 8,16,32,64,128,256,512,1024. 
The number of resources ranges from 1 through 6, where each resource has a very large number of 
100000 units. As can be seen, the run times do not change much at all as the number of resources 
increases. The primary reason is that amrmdl uses a single compound resource that combines 
multiple resources into a single virtual resource to be allocated. Hence, it scales well and is robust 
with any increase in the number of resources. The primary determinant of run times in this case is 
the number of tasks which are considered for allocation. 

5.5    Comparative Evaluation of amrmdl & Integer-Programming 

The unpredictable run times and the lack of scalability to large problems clearly make pure integer 
programming methods unsuitable for use in on-line admission control. Even with approximation 
techniques, such as setting a timeout, high quality results cannot be achieved within a reasonable 
amount of time. By contrast, the amrmdl algorithm obtained solution quality of better than 96% of 
optimal with a worst-case execution time of only 90ms on the 30 task example compared to solution 
qualities of 93% of optimal using integer programming with a 3 second timeout. In addition, amrmdl 
also uses far less memory than integer programming which uses substantial amounts of memory as 
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Figure 5: Solution Quality with Timeouts in Mixed Integer Programming 

it searches the solution space. The combination of the faster running times and lower memory 
consumption make amrmdl far more suitable for on-line admission control. 

6    Concluding Remarks 

Real-time and multimedia systems must deal with a host of QoS dimensions including audio fidelity, 
video frame-rate, sampling rate, algorithmic precision, and end-to-end latency. Distributed appli- 
cations such as video-conferencing, internet telephony and air traffic control also require the use of 
multiple resources at end-hosts and on intermediate network links. In this paper, we have studied 
the general problem of apportioning multiple finite resources to satisfy the QoS needs of multiple 
applications along multiple QoS dimensions. Each application derives some utility as resources are 
allocated to it and its QoS requirements can be satisfied to a greater or lesser degree. Our ob- 
jective was to maximize the utility derived by all the applications in the system. This problem is 
shown to be NP-hard. We have then presented, evaluated and compare three strategies to solve this 
problem. Two traditional approaches, dynamic programming and mixed integer programming, are 
used to compute optimal solutions to this problem but we show that their running times are rather 
high (as might be expected). An adaptation of the mixed integer programming problem, however, 
yields near-optimal results with (potentially) significant lower running times. Finally, we present 
and evaluate an approximation algorithm based on a local search technique which combines multiple 
resources into a single compound pseudo-resource. This scheme yields a solution quality that is less 
than 5% away from the optimal solution but is shown to run more than two orders of magnitude 
faster. In addition, the use of the "compound resource" allows this technique to be very scalable 
and robust as the number of resources required by each application increases. 

This work can progress along several future directions. First, we are currently implementing 
this optimization model in the Amaranth test-bed at Carnegie Mellon. Secondly, the current model 
has assumed that one pre-defined set of resources is used by each application (perhaps in different 
quantities based on the implementation chosen). This, for example, corresponds to the use of a 
static route between two nodes on a network. This assumption needs to be relaxed in the future. 
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A    Sample Task Profiles and Solution Results 

A.l    Sample Task Profiles 

Task profile in stanza form: 
-CTASK.Profile: tid =11 

qmin = <0,0,0> qmax = <4,3,4> 
{Application_Profile: 

[QoS_Profile: 3 
[QoS_Profile_Dim: 0.3031 4 <0.7697,0.8849,1,1>] 
[QoS^Profile_Dim: 0.3745 3 <0,1,1>] 
[QoS_Profile_Dim: 0.3224 4 <0.849,0.849,0.849,1>] 

] 
[Respurce_Profile: <4,3,4> 

[<9,5>,<5,15>] [<13,5>,<6,17>] [<17,6>,<7,19>3 [<22,6>,<8,21>] 

[<24,11>,<6,20>] [<32,12>,<7,22>] [<42,13>,<8,24>] [<56,14>,<9,26>] 

Translated Task profile in vanilla form: 
<1,1,1> 0.171055 [<5,7>,<7,3>] 
<1,1,2> 0.353209 [<6,8>,<9,3>] 
<1,1,3> 0.535371 [<7,9>,<11,3>] 
<1,1,4> 0.535371 [<9,11>,<14,4>] 
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<4,3,1> 0.635684  [<12,17>,<14,6>] 
<4,3,2> 0.817838  [<14,20>,<17,7>] 
<4,3,3> 1   [<18,23>,<21,7>] 
<4,3,4> 1   [<22,27>,<26,8>] 

A.2    Sample Results 

Due to length limitations, we list only one assigned quality point for each task (multiple quality 
points which consume the same amount of resources exist for some tasks). 

The following example consists of 15 tasks, an rmax of (180,100) and a gmax of (4,3,4). 

Algorithm amrmdl: 
Task 0 

Task 1 
Task 2 

Task 3 

Task 4 

Task 5 

Task 6 
Task 7 

Task 8 

Task 9 

Task 10 

Task 11 

Task 12 
Task 13 

Task 14 

(qid-33,q-<3)3,l>,r-<12,7>,u-0.897889) 

(qid=21,q=<2,3,l>,r=<13,3>,u=0.986799) 
(qid=20,q=<2,2,4>,r=<10,9>,u=0.635217) 
(qid=0,q=<0,0,0>,r=<0,0>,u=0) 

(qid=46,q=<4,3,2>,r=<26J8>,u=l) 

(qid=33,q=<3,3,l>,r=<7,12>,u=0.476604) 
(qid=8,q=<l,2,4>,r=<U,12>,u=0.97287) 
(qid=24,q=<2,3,4>,r-<18,ll>,u=0.950321) 

(qid=9,q=<l,3,l>,r=<18,0>,u=0.904968) 

(qid-43,q-<4,2,3>,r^<9,5>,u^0.891014) 

: (qid=10,q=<l,3,2>,r=<12,2>,u=0.963892) 

: (qid=5,q=<l,2,l>,r=<ll,5>,u=0.881512) 

: (qid=0,q=<0,0,0>,r=<0,0>,u=0) 
: (qid=37,q=<4,l,l>,r=<16,14>,u=0.717887) 

: (qid=16,q=<2,l,4>,r=<17,10>,u=0,907425) 
Time: 39439us 

Total: (11.1864,<180,98>) 

Algorithm mrmd: 

Task 0 : (<12,7>,0.8979) 
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Figure 8: Running Times of Algorithm amrmdl with the number of resources (m) — 3 and varying 
the number of QoS Dimensions 

Task 1   :   (<13,3>,0.9868) 
Task 2  :   (<7,5>,0.5198) 
Task 3  :   (<0,0>,0) 
Task 4  :   (<24,7>,0.9452) 
Task 5  :   (<7,12>,0.4766) 
Task 6  :   (<21,4>,0.9457) 
Task 7  :   (<14,11>,0.8911) 
Task 8  :   «18,0>,0.905) 
Task 9  :   (<9,5>,0.891) 
Task 10  :   «12,2>,0.9639) 
Task 11  :   «11,5>,0.8815) 
Task 12  :   «18,8>,0.4959) 
Task 13  :   (<13,14>,0.6667) 
Task 14 :   «0,17>,0.9074) 
Time: 31137433us 
Total:   (11.37,  <179,100>) 
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